Latest Posts:

Mostrando las entradas con la etiqueta magnetismo. Mostrar todas las entradas
Mostrando las entradas con la etiqueta magnetismo. Mostrar todas las entradas

26 de noviembre de 2019

George Green: el molinero que revolucionó el electromagnetismo

El físico y matemático inglés George Green publicó sus primeros artículos con las suscripciones de sus vecinos mientras trabajaba en el molino familiar.

Una niña, frente al molino de la familia Green, actualmente convertida en museo de ciencia e historia.

A principios del siglo XIX, los científicos provenían de familias adineradas o de clase alta, que se podían permitir años de costosa educación para sus hijos. Sin embargo, la vida del matemático y físico George Green, responsable de grandes avances en el electromagnetismo y en la teoría de ecuaciones en derivadas parciales, fue muy diferente.

No se sabe exactamente cuando nació, pero fue bautizado el 14 de julio de 1793 en Nottingham (Inglaterra). En 1801, con ocho años, fue inscrito en la escuela de Robert Goodacre, una reputada institución privada. Pero apenas un año más tarde tuvo que abandonar su formación para trabajar en la panadería familiar; el negocio iba bien y querían expandirlo.

En 1807, su padre compró un terreno en una villa cercana a Nottingham y construyó un molino. En 1817 la familia Green se trasladó a una casa construida en la misma finca y George, con 24 años, se inició en el oficio de molinero. Durante estos años, estudió física y matemáticas de forma autodidacta. Aunque no está del todo claro cómo pudo acercarse a estas disciplinas con solo un año de escolarización, es posible que un vecino de Nottingham, John Toplis, le ayudara. En ese momento era la única persona en la ciudad con la formación suficiente en matemáticas para enseñar a Green (tradujo del francés el primer volumen de la Mécanique Céleste de Laplace en 1814), y además, vivía cerca de la familia antes de que se mudasen.


En 1823 Green se unió a la Biblioteca de Subscripción de Nottingham, lo que le dio acceso a revistas científicas como los Philosophical Transactions of the Royal Society, aunque sólo del ámbito nacional. Entre 1823 y 1828 nacieron sus primeros dos hijos, falleció su madre y trabajaba a tiempo completo, pero el tiempo del que disponía lo empleaba en estudiar en el piso superior del molino.

En 1828 publicó su primer trabajo, An Essay on the Application of mathematical Analysis to the theories of Electricity and Magnetism. Creyéndose un total aficionado, Green no lo envió a ninguna revista científica, sino que puso un anuncio en un periódico local anunciando su inminente publicación y pidiendo a la gente interesada en recibirlo que pagase una cuota para costear la producción de una tirada. El precio de la subscripción era 7,5 chelines, lo que equivalía aproximadamente al salario de una semana de un obrero. Aun así hubo 51 personas que respondieron al anuncio y recibieron su correspondiente copia, muchas de ellas pertenecientes a la Biblioteca de Subscripción de Nottingham. Aunque la inmensa mayoría no entenderían de que trataba el trabajo, alguna de las copias llegó a Sir Edward Bromhead, quien sí tenía los conocimientos adecuados para apreciarlo. Tras leerlo, se apresuró a escribir a Green ofreciéndole ayuda para futuras publicaciones.

Durante dos años no contestó, considerando que la carta había sido pura cortesía y que, dada la diferencia de clases sociales, hubiese sido de mala educación responder. Pero convencido por un amigo, finalmente lo hizo, dando comienzo a una importante colaboración. Entre 1830 y 1833 Green escribió otros tres artículos y Bromhead se encargó de que dos fueran publicados por la Cambrige Philosophical Society y el otro por la Edimburg Royal Society.

Bromhead le propuso viajar a la Universidad de Cambridge, conocer a importantes científicos, y comenzar sus estudios allí. Aun con ciertas dudas y tras sortear varias dificultades, Green dejó el molino –que años después se convertiría en un museo de ciencia en su honor- y comenzó a estudiar en la universidad a la edad de 40 años.

Se graduó en 1837, siendo el 4º de su promoción. En 1839 obtuvo un puesto de investigación en la universidad, pero a comienzos de 1840 cayó enfermo y tuvo que volver a Nottingham. Un año más tarde murió, con 49 años de edad. En el corto periodo que formó parte de la comunidad científica, ni Green ni sus compañeros supieron ver la importancia de sus matemáticas.

Pero con el paso del tiempo, su influencia en la ciencia fue creciendo: el concepto de potencial, que había ideado en su artículo de 1828, fue adoptado en la teoría del electromagnetismo (por ejemplo, en las ecuaciones de Maxwell) y en teoría de campos; las técnicas matemáticas que había desarrollado en ese mismo texto llevaron al enunciado del que hoy se conoce como Teorema de Green, y que aprenden en su primer año de carrera todos los estudiantes de física y matemáticas. También llevan su nombre las funciones de Green que ideó para resolver aproximadamente ecuaciones en derivadas parciales y que son una herramienta clave en la moderna teoría cuántica de campos. Sin duda, consiguió alcanzar su mayor sueño: contribuir a la ciencia.

Artículo tomado de: El País (Ciencia)
 

13 de febrero de 2014

Se crea un imán con un solo polo


Imán

Los imanes tienen dos polos, uno norte y uno sur. Pero por más que se intente romper un imán, cada parte tendrá siempre los dos polos.
Imán

Los imanes tienen dos polos, uno norte y otro sur.

Es decir, los polos nunca podrán separarse en monopolos magnéticos. Sin embargo, el físico británico Paul Dirac enunció la existencia de imanes de un solo polo en 1931, aunque hasta ahora el monopolo magnético de Dirac ha probado ser muy elusivo.
Pero en un estudio que publica la revista Nature, científicos de la Universidad de Aalto, en Finlandia y del Amherst College, en Estados Unidos, afirman haber creado y visto al famoso monopolo en un sistema cuántico, es decir de partículas subatómicas, por primera vez.

"Detectar un monopolo magnético natural sería un evento revolucionario comparable al descubrimiento del electrón", dicen en su trabajo los investigadores.

"Nuestro trabajo ofrece evidencia experimental conclusiva y muy esperada de la existencia de los monopolos de Dirac".

"Supone una oportunidad sin precedentes para observar y manipular estas entidades cuánticas en un ambiente controlado".

A la caza del monopolo

Los elusivos monopolos han sido largamente buscados por la ciencia porque pueden ayudar a explicar varios fenómenos físicos.

Los investigadores han intentado "cazarlos" desde Paul Dirac teorizó sobre sus características cuánticas en 1931.

Dirac demostró que incluso si solo existe un solo monopolo, entonces toda la carga eléctrica debe ser discreta o divisible, algo que de hecho ha sido demostrado.

Para observarlos y ponerlos a prueba en el laboratorio, los científicos crearon un sistema cuántico: el campo magnético de una nube de átomos de rubidio en un estado de materia inusual conocido como condensado de Bose-Einstein.

Monopolo magnético

Ilustración del monopolo magnético sintético.

Utilizando un escáner, detectaron la marca distintiva del buscado monopolo, conocida como "cuerda Dirac".

Los investigadores aclaran que, mientras otros científicos han producido análogos de imán de un solo polo, esta es la primera demostración en un sistema cuántico que puede ponerse a prueba de forma experimental.
"Esta creación de un monopolo de Dirac es una bella demostración de simulación cuántica", opinó la física Lindsay LeBlanc, de la Universidad de Alberta, en Canadá, quien no estuvo involucrada en el trabajo.
"Aunque sus resultados ofrecen sólo una analogía de un monopolo magnético, su compatibilidad con la teoría refuerza la expectativa de que esta partícula será detectada experimentalmente".

"Como dijo Dirac en 1931, 'bajo estas circunstancias me sorprendería que la naturaleza no hubiera hecho uso de él'".

Fuente:

BBC Ciencia

19 de septiembre de 2013

Cómo hacer una brújula en casa

Experimento para hacer una brujula

Para encontrar el norte, un imán y una aguja.

Nuestro planeta actúa como un imán gigante, creando un campo magnético que protege a la Tierra de la radiación del espacio.

Los metales magnetizados se alinean naturalmente con ese campo y uno puede aprovechar ese efecto invisible en el experimento que les proponemos este fin de semana, en que científico Mark Miodownik nos muestra cómo magnetizar una aguja para crear una brújula.

Qué se necesita

Una aguja de coser
Un corcho o una tapa de plástico de una botella
Una barra de imán
Pegamento en barra
Un plato de sopa poco profundo con agua
Un cuchillo afilado o tijeras
Toalla (opcional)

Cómo se hace

Instrucciones para hacer una brújula

1. Corte un círculo de corcho de unos 5mm a 10mm de espesor. También puede usar una tapa de botella plástica.

Instrucciones para hacer una brújula

2. Frote la aguja unas 50 veces con la parte norte del imán. Si el imán no tiene marcado el norte, escoja un lado y use sólo ese. Separe el imán de la aguja tras cada frotada para reducir la probabilidad de que se desmagnetice. Frotar desde el agujero hasta la punta hace que los átomos de hierro de la aguja se alineen, convirtiéndola temporalmente en un imán.

Instrucciones para hacer una brújula

3. Pegue la aguja magnetizada en el corcho y póngalo cuidadosamente en el plato con agua.

Instrucciones para hacer una brújula

4. El agua provee una superficie casi sin fricción que le permite al corcho girar hasta que el polo norte de la aguja (el agujero) apunte hacia el polo norte magnético (como se ve en la brújula comprada). Si se frota la aguja con el imán en la otra dirección, será la punta la que señale el norte.

No ponga el plato cerca de computadoras u otros aparatos que contengan imanes pues pueden afectar las líneas de campo. La aguja perderá su carga magnética con el tiempo.

Por qué se magnetiza

El hierro, el níquel y el cobalto contienen pequeñas regiones llamadas dominios magnéticos, en que los electrones se alinean en la misma dirección. Estos dominios apuntan en diferentes direcciones, por lo que tienden a anularse entre sí.

Cuando uno de esos metales es expuesto a un campo magnético fuerte, los dominios se alinean, lo que los convierte en un imán temporal.

Por qué la brújula apunta al norte

Una vez que se magnetiza la aguja, ésta naturalmente se alinea con el campo magnético más fuerte de la Tierra.

Los científicos creen que este campo, llamado magnetósfera, es creado por las corrientes eléctricas generadas por la agitación del núcleo de hierro fundido en lo más profundo del planeta.

Esto significa que la Tierra actúa como si tuviera un imán que la atraviesa, con el polo sur del imán situado cerca del norte geográfico del planeta. Dado que los opuestos se atraen, el polo norte de una aguja imantada apunta en esa dirección

Tomado de:

BBC Ciencia

22 de diciembre de 2012

Estos son los mejores regalos de Navidad para los amates de la ciencia

  • Te mostramos cinco regalos muy originales para sorprender en Navidad.
  • Aerogel, ferrofluidos, piedras gömböc, 'buckyballs' y galio, los regalos perfectos para cualquiera que le guste la ciencia.
5. Galio




El Galio es un metal que permanece en estado sólido a temperaturas inferiores a 28º. Eso significa que el mero contacto de un trozo de galio con nuestra piel (el cuerpo humano está a unos 37º) se funde. Al contrario que otros metales similares como el mercurio, el galio no es tóxico, con lo que su manipulación es segura y divertida.

4. Bolitas magnéticas




Las 'buckyballs' son esferas de magnéticas de neodimio que se pueden usar para construir estructuras enlazándolas unas con otras. Viene a ser un puzzle en tres dimensiones que se mantiene exclusivamente gracias a la atracción magnética de las esferas. Unas pocas decenas de estas bolas garantizan horas y horas de diversión.

3. Piedra Gömböc




 Un gömböc es un cuerpo geométrico que posee un único punto estable, de manera que no importa de qué manera lo dejes sobre una superficie, siempre volverá a la misma posición. Las piedras con forma gömböc pueden ser un regalo interesante para estimular el interés en la geometría y la física.

2. Ferrofluido




El ferrofluido es un líquido que reacciona ante la presencia de campos magnéticos, con lo que se puede alterar su forma usando imanes. Este tipo de materiales se utiliza como aislante térmico en altavoces.

1. Aerogel




El aerogel es una sustancia sólida altamente porosa compuesta en casi un 99% por aire. Conocido coloquialmente como 'humo sólido', el aerogel es un aislante térmico excepcional y puede soportar más de 1.000 veces su peso. Su extrema ligereza y su aspecto fantasmagórico pueden convertir un pedazo de aerogel en un estupendo regalo con el que experimentar.

Fuente:

La Información

10 de diciembre de 2012

Carga las baterías sin enchufar el coche


induccion1Un nuevo sistema llamado inducción en carga rápida permitirá a los coches eléctricos recargar sus baterías sin necesidad de cables. Gracias a ello, la recarga del automóvil será muy cómoda para el usuario, ya que bastará situar el coche sobre la plataforma de carga sin necesidad de bajarse del mismo.

Este proceso, desarrollado por Endesa y la Fundación Circe, permitirá cargar el 80 por ciento de las baterías del coche en tan solo 15 minutos. El sistema está formado por dos bobinas eléctricamente aisladas y acopladas magnéticamente a través del aire. El emisor situado en el suelo puede transferir la energía a un receptor que se encuentra a varios centímetros de distancia, en este caso integrado en la carrocería del automóvil eléctrico. El receptor del vehículo se encarga después de transferir la energía a una batería de la que se alimenta el motor eléctrico.


Aparte de la comodidad que implica el no tener que bajarse del vehículo, se ha conseguido, mediante un sistema de apantallamiento, que la carga a esos niveles de emisión sea segura, manteniendo los niveles de emisiones por debajo del límite permitido.

La base de esta tecnología no es nueva, y ya en la antigua Grecia se comienzan a estudiar estos fenómenos para averiguar la causa del magnetismo y la electricidad estática observados en la magnetita y el ámbar. Sin embargo, tuvieron que pasar muchos siglos para poder descifrar la naturaleza de estos fenómenos y su relación entre ellos.


Ahora, esta tecnología de base deberá ser desarrollada para poder, posteriormente, incorporarse y adaptarse a las necesidades de cada caso. Por ejemplo, puede ser muy útil para la recarga de autobuses urbanos o camiones en estaciones de servicio en zonas específicas habilitadas para ello. Se podrían incluso habilitar puntos de recarga en paradas de las líneas de autobuses, que permitieran la carga parcial suficiente para recorrer la distancia entre ellas.


Fuente:

Muy Interesante

22 de septiembre de 2012

Descubren una estrella gigante con el mayor campo magnético jamás observado


La estrella masiva más magnética vista hasta ahora está arrastrando una capa gigante de partículas cargadas atrapadas a su alrededor.

Esta estrella recién descubierta, NGC 1624-2, podría ayudar a arrojar luz sobre el papel que el magnetismo de las estrellas tiene en la evolución de las estrellas y sus galaxias.

NGC 1624-2, que se encuentra a unos 20.000 años luz de la Tierra, en la constelación de Perseo, tiene cerca de 35 veces la masa del sol. Su gran masa indica que posee una gran cantidad de combustible, lo que indica que es brillante y caliente, y, por lo tanto, es probable que se queme con relativa rapidez, después de una vida de unos 5 millones de años, o una décima parte del 1 por ciento de la actual edad de muestro sol.

Esta estrella masiva posee un campo magnético 20.000 veces más fuerte que el del propio sol y casi 10 veces más fuerte que el detectado en torno a cualquier otra estrella de gran masa.

“Los campos magnéticos de esta fuerza son extremadamente raros, sólo se sabe que existen en algunas estrellas con una masa mucho menor”, comento el autor principal del estudio Gregg Wade, un astrónomo del Royal Military College de Canadá. ”Encontrar un campo tan fuerte es ser muy afortunado.”

“Este campo magnético potente une y controla el viento estelar de partículas energéticas que fluyen de NGC 1624-2 arrastrándolo a una gran distancia de la estrella, 11,4 veces el radio de la estrella. El gran volumen de esta magnetosfera es notable. Esto es más de cuatro veces mayor que la de cualquier otra estrella masiva comparable, y en términos de volumen es unas 80 veces más grande.”

Aunque NGC 1624-2 es la más magnética de todas las estrellas masivas conocidas, algunas estrellas de masa intermedia tienen campos magnéticos tal vez dos veces más fuerte, dijo Wade. (Nuestro sol y otras estrellas similares están considerados como astros de baja masa.)

Además, este poderoso campo magnético de NGC 1624-2 podría palidecer en comparación con el que exhiben los magnetares – densos restos de estrellas muertas que son a menudo considerados como los objetos con mayor campo magnetico del universo.

El campo magnético de NGC 1624-2 es de aproximadamente 20.000 gauss en la superficie de la estrella. Un magnetar típico puede tener un campo en el orden de 10 billones de gauss, por lo que la fuerza del campo del magnetar es mucho más grande, unos 500 millones de veces mayor.

Sin embargo, la base estándar para comparar como de grande es un campo magnético implica al flujo magnético sobre todo el área de la superficie de la estrella, por lo que, en este caso, el flujo de NGC 1624-2 es casi 700 veces mayor que el de un magnetar típico.

En otras palabras, si NGC 1624-2 se derrumbase súbitamente hasta alcanzar el tamaño de un magnetar, conservando todo su magnetismo, tendría un campo magnético superficial de cerca de 10.000 billones de gauss.

El campo magnético de la estrella influye en la estructura interna de la materia dentro de NGC 1624-2, afectando a su vida desde el nacimiento hasta que finalice su existencia con una muerte violenta como una explosión de supernova. Sin embargo, los procesos fundamentales que producen los campos magnéticos de las estrellas masivas siguen sin comprenderse bien.

“Necesitamos observaciones de estrellas similares a NGC 1624-2 para enseñarnos lo que realmente está pasando”, dijo Wade.

La estrella es a la vez distante y se encuentra rodeada por el polvo. Para estudiar su luz en detalle, el equipo internacional de científicos observó esta estrella con el inmenso poder de recolección de luz del espejo del Telescopio Hobby-Eberly en el McDonald Observatory de la Universidad de Texas en Austin. Sus observaciones sugieren que la estrella está rotando muy lentamente, tomando unos 160 días terrestres en girar una vez sobre su eje. En comparación, el sol tarda cerca de 25 días.

“Creemos que la estrella es más lento porque tiene que arrastrar su viento que la rodea -ya que el viento está enlazado con el campo magnético”, dijo Wade. ”Esto es algo que tiene que ser probado, pero parece lo más probable.”

El equipo también midió la fuerza del campo magnético de la estrella usando el Telescopio Canadá-Francia-Hawaii en Mauna Kea en Hawai. Específicamente, observaron pequeñas variaciones en la dirección de la rotación de las ondas electromagnéticas absorbidas o emitidas por los átomos situados en el campo magnético.

“Un exceso de rotación de las ondas en el sentido de las agujas del reloj indican que el campo magnético está apuntando hacia nosotros, mientras que un exceso de rotación en sentido antihorario señalaría que el campo magnético se encuentra en la dirección opuesta a nosotros”, dijo Wade. ”Cuanto mayor sea el exceso, mayor será el campo magnético. Estos excesos son generalmente muy pequeños, y requieren muchas observaciones, además de un cuidadoso procesamiento de los datos para desentrañar la señal. Pero en el caso de NGC 1624-2, era obvio desde nuestras propia primeras observaciones de que un campo magnético muy fuerte estaba presente.”

Aun se necesita una mayor comprensión en como intervienen las estrellas masivas en la formación de otros soles o dan forma a las galaxias enteras. El poderoso campo magnético de NGC 1624-2 y sus efectos sobre su viento estelar bien pueden haber influido en el tasa de nacimiento de estrellas en la nebulosa donde nació y el clúster circundante “, dijo Wade. ”El magnetismo es un fenómeno esencialmente invisible incluso para la mayoría de los astrónomos y puede tener un impacto extraordinario”.

“La pregunta más importante que tratamos de responder es: ¿Cuál es el origen del magnetismo en las estrellas masivas?¿de dónde y cómo nacen los intensos campos magnéticos?” ”Creemos que esto debe suceder cuando las estrellas son muy jóvenes. Recientemente se ha sugerido que las colisiones estelares y las fusiones durante la formación de las estrellas puede ser responsables de estos efectos. Un próximo paso importante es investigar estas primeras etapas de la evolución así como examinar las propiedades magnéticas de los sistemas estelares binarios, ya que estos pueden representar ejemplos de sistemas que sufrieron encuentros al principio de su historia”.

Los científicos detallaron sus hallazgos en la edición del 11 de septiembre de la revista Monthly Notices de la Royal Astronomical Society.

Fuente:

google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0