Latest Posts:

Mostrando las entradas con la etiqueta luz. Mostrar todas las entradas
Mostrando las entradas con la etiqueta luz. Mostrar todas las entradas

28 de enero de 2020

¿A qué velocidad viaja la electricidad por el cable?


Como ya sabrás, la luz viaja muy rápido, aproximadamente a 299.792.458 metros por segundo, pero claro, ésta velocidad sólo se alcanza a través del vacío o lo que es lo mismo, el espacio, y nuestro planeta está completamente formado por materia, incluido el aire, por lo que nunca llega a darse este caso.

Pero ¿te has preguntado alguna vez a cuánta velocidad viaja la electricidad dentro de un cable como los que nos suministran la corriente a diario? Te adelantamos que la respuesta, comparada con la velocidad de la luz es casi ridícula y seguro que te va a dejar anonadado.

Para responder a esta pregunta debemos ampliar nuestra lupa y viajar al nivel subatómico. El término Átomo es una palabra que pertenece al griego antiguo y quiere decir «indivisible», aunque gracias a los descubrimientos hechos a lo largo de los siglos XIX y XX sabemos que no es así, pues el átomo se divide en distintas unidades como son los neutrones, sin carga eléctrica; los protones, con carga positiva y los electrones, con carga negativa. Estos últimos son lo que nos interesan en esta cuestión y sí que son indivisibles, al menos para la ciencia actual, y tienen un tamaño tan pequeño que es imposible de determinar.

La energía que se produce durante el desplazamiento de los electrones a través del cable es la que genera la electricidad pero sorprendentemente la velocidad que adquieren dichos electrones en un cable de cobre como los que recorren nuestra casa es menor a 1 milímetro por segundo. Para establecer una comparativa, es menor que la velocidad a la que se desplaza un caracol.

Esto es sorprendente principalmente porque cuando pulsamos cualquiera de los interruptores la luz se enciende automáticamente y los cables que recorren nuestras casas suelen ser considerablemente largos.

Pues bien, para entender el porqué de ese encendido automático debemos visualizar un pequeño tubo completamente relleno de canicas del mismo tamaño que su diámetro, ya que los electrones se sitúan en el cable de una manera parecida y en un tamaño casi infinitamente grande.

Si introdujéramos una canica más por un extremo del tubo podríamos observar que, por muy largo que éste sea, la canica que se encuentre en el otro extremo va a salir. Y es que así es el comportamiento de los electrones dentro del cable: uno sólo no recorre todo el cable, si no que al aparecer uno nuevo todos los demás se desplazan liberando el último, por lo que la velocidad de la corriente en su conjunto es similar a la velocidad de la luz.

Fuente: PLC Madrid

11 de diciembre de 2019

El verdadero significado de los colores en la publicidad

Al transmitir emociones, los colores son usados como una poderosa herramienta de comunicación por los publicistas.


A diario utilizamos los colores en nuestras vidas: para vestirnos, maquillarnos, decorar la casa, restaurar algo, en la gastronomía y muchas otras actividades más. Así como es importante para diversas facetas, también lo es para la publicidad.

Y es que el hecho de transmitir sensaciones, son usados como una herramienta de comunicación para influir en la compra o adquisición de un determinado producto o servicio.

Debido al rol importante que juegan al momento de definir una compra, te damos a conocer qué significa cada uno de ellos y cómo son utilizados en la publicidad.

El poder del azul, rojo, amarillo, verde, balnco, negro, gris, rosa, naranja, violeta, plata, dorado y marrón  AQUÍ. 

 

31 de enero de 2019

Qué es la "luz líquida" y por qué se le considera el quinto estado de la materia

En el cuento "La luz es como el agua" Gabriel García Márquez narra las aventuras de Totó y Joel, dos niños que en las noches rompen las bombillas de su casa y navegan entre los caudales de luz que brotan de ellas. 


Izquierda: la luz se topa con un obstáculo antes de ser un superfluido. Derecha: la luz se topa con un obstáculo después de ser convertida en superfluido. 

"Un chorro de luz dorada y fresca como el agua empezó a salir de la bombilla rota, y lo dejaron correr hasta que el nivel llegó a cuatro palmos. Entonces cortaron la corriente, sacaron el bote, y navegaron a placer por entre las islas de la casa", escribe el Nobel.

La escena, por fantástica que parezca, no está muy lejos de la realidad.

Los científicos que estudian fenómenos cuánticos han demostrado que la luz, bajo condiciones especiales, puede comportarse como un líquido que fluye y ondula alrededor de los obstáculos que encuentra, como la corriente de un río entre las piedras.

¿Cómo lo hacen?

La "luz líquida" es una sustancia muy particular. No es sólido ni plasma y tampoco se comporta exactamente como un líquido o un gas.

Los científicos la llaman Condensado de Bose-Einstein (BEC) y la consideran el "quinto estado de la materia".
En este estado, las partículas se sincronizan y se mueven al unísono, formando un "superfluido".

"Se parece a cualquier otro líquido o gas, pero con propiedades especiales, una de las cuales es que todas sus partes están relacionadas", le dice a BBC Mundo Daniele Sanvitto, investigador del Instituto de Nanotecnología de Italia.

Los superfluídos no crean ondas, y no experimentan fricción ni viscosidad.

Tienen un "comportamiento colectivo", dice Sanvitto. "Es como un grupo de bailarines haciendo los mismos movimientos o una ola de gente marchando al mismo compás".

Así, un líquido común, al toparse con una pared rebotaría, pero un superfluido, como la luz líquida, circularía a lo largo de la pared.

" Si enviaras un chorro de estos contra una pared, la escalará en cualquier dirección y eventualmente se volverá a conectar después del obstáculo", explica Sanvitto.

¿Para qué sirve la luz líquida?

Hasta hace unos años, los superfluídos solo podían lograrse en temperaturas cercanas al cero absoluto (−273°C), pero en 2017 Sanvitto y sus colegas lograron producir luz líquida a temperatura ambiente.

Esto lo lograron usando mezclas de luz y materia, llamadas polaritones.

"Este es el primer paso para tener aplicaciones de este líquido en la vida diaria", dice Sanvitto.
Hasta el momento, los experimentos con BEC se han logrado solo a pequeña escala en los laboratorios, pero los investigadores le ven un gran potencial para transmitir información y energía sin desperdicio.

Un ejemplo sería la creación de computadores ópticos, que puedan aprovechar la interacción de las partículas de luz sin el problema de la disipación o el calentamiento de los computadores comunes. Esto hará que sean mucho más rápidos y consuman menos energía.

Esta tecnología también podría revolucionar el manejo de los láseres y los paneles solares. Incluso, como lo menciona el científico Michio Kaku en una entrevista con This Week in Science, hay quienes piensan que en un futuro los BEC podrían sentar las bases para teletransportar objetos.

Por ahora eso solo es posible en la imaginación, como alguna vez lo fue en el cuento de García Márquez…

Tomado de: BBC Mundo 

15 de enero de 2019

¿La luz de las farolas provoca cáncer?

Una cosa es que no podamos establecer una relación causal entre la iluminación nocturna y el mayor riesgo de cáncer, pero sí podemos decir con contundencia que no es beneficiosa.


Así planteado la respuesta es no, pero también es verdad que aquí hay mucho que hablar. Es casi seguro que la pregunta viene por una serie de estudios que se han hecho a partir del año 2008 y que vinculan las áreas urbanas con más luz nocturna con un aumento del riesgo de padecer dos tipos de cáncer: mama y próstata. Lo que hicieron los investigadores fue medir la luz reflejada en el cielo que captan los satélites y una vez que identificaron las ciudades más iluminadas, comprobaron si había algún tipo de asociación con un aumento de la incidencia de estos cánceres, mama y próstata, que son los que, en principio, se vincularían con mayor exposición a luz nocturna. Los autores del estudio encontraron que sí había una asociación entre mayor iluminación y un mayor riesgo. El problema de estos estudios, y que es una pega real, es que no detectan qué luz recibe individualmente cada sujeto, sino la que hay reflejada en el cielo y que no tiene que coincidir necesariamente con aquella a la que cada uno se expone en su casa.

También hay que tener en cuenta que el hecho de vincular la luz nocturna con el cáncer es un tanto controvertido, no se puede decir así. Lo que sí se sabe es que la luz nocturna hace que el organismo produzca menos una hormona llamada melatonina. Y sabemos también que esa falta de melatonina altera el sistema circadiano. Debes saber que el sistema circadiano tiene un reloj biológico que está en nuestro cerebro y está preparado evolutivamente para detectar la alternancia entre la luz y la oscuridad, entre el día y la noche. Sabemos igualmente, gracias a los estudios epidemiológicos, que las alteraciones en nuestro sistema circadiano sí se vinculan a una serie de enfermedades como el síndrome metabólico y otras alteraciones cognitivas y afectivas. Se sabe, por ejemplo, que las personas que trabajan en turnos y que tienen alterado su sistema circadiano son más proclives a este tipo de enfermedades.

En el año 2008, la Organización Mundial de la Salud publicó un informe que decía que la disrupción circadiana, que incluye la luz y otros aspectos, es potencialmente carcinogénica para humanos y la incluía en el grupo 2A. El grupo 2A incluye a los factores que no muestran evidencias experimentales en humanos con la aparición de cáncer sino que la relación es asociativa, no causal. Es decir, las dos cosas parecen ir juntas pero no podemos demostrar que una lleve a la otra. En animales de experimentación en cambio las evidencias sí son suficientes para decirlo pero no en el caso humano.

Lea el artículo completo en: El Páis (España)
 

8 de enero de 2019

El color rosa no existe, es solo nuestro cerebro mezclando longitudes de onda

El color rosa no existe en la naturaleza y lo que llamamos así es solo un esfuerzo del cerebro por conjugar la longitud de onda del rojo y el violeta; otros discrepan y aseguran que el rosa es un color tan real o irreal como cualquier otro.


Aunque el color rosa es uno de los menos polémicos y hasta cierto punto preferidos por muchísimas personas, comúnmente asociado a la ternura, a veces a la femineidad y conceptos afines, desde una perspectiva científica y natural hay ciertos problemas para comprobar su existencia.

Tomando en cuenta que todos los colores son solo ondas de luz con frecuencias específicas, es curioso que no existe como tal una que corresponda al rosa o, dicho de otra manera, en la que se combinen el color rojo y el violeta, por lo cual el rosa es una invención, el nombre dado a algo que estrictamente no puede existir naturalmente, solo un esfuerzo de nuestro cerebro por mezclar las longitudes de onda del rojo y el violeta.

Esta versión, sin embargo, ha sido debatida por Michael Moyer, colaborador de Scientific American, quien asegura que el color no es una propiedad de la luz ni de los objetos que la reflejan, sino una impresión nacida en el cerebro, por lo cual el rosa es un color tan real (o irreal) como cualquier otro.
Sea como fuere,  quizá algunos hagan suya una de las dos propuestas, tanto los rosafóbicos como los rosafílicos.

15 de diciembre de 2018

El físico indio que dobló la luz

Muy poca gente tiene la suerte de vivir lo suficiente para ver cómo sus trabajos revolucionan el mundo. El físico indio Narinder Singh Kapany es una de esas personas afortunadas. En 1953 diseñó y fabricó un cable de vidrio capaz de transportar la luz, al que más tarde llamó fibra óptica; un invento que ha transformado nuestras vidas. Sin él no serían posibles Internet y las telecomunicaciones actuales, ni la instrumentación biomédica más puntera, ni un aprovechamiento eficiente de la energía solar. Con la fibra óptica este genio de la física —además de emprendedor e inventor— logró lo que sus profesores le habían dicho que era imposible: doblar la la luz.

Narinder Kapany nació el 31 de octubre de 1926 en Moga (al norte de la India), en el seno de una familia acomodada sij. Allí estudió Física en la Universidad de Agra, a la vez que trabajaba en una fábrica de diseño y fabricación de instrumentos ópticos, donde empezó a interesarse por las aplicaciones tecnológicas de las teorías que estudiaba.

Tras licenciarse en 1952, se trasladó a Londres para cursar el doctorado en el Imperial College de Londres junto al prestigioso físico británico Harold Hopkins, investigador en el campo de la óptica. Kapany buscaba conseguir un sistema que permitiese usar la luz como medio de transmisión de información, recogiendo el testigo de célebres científicos anteriores. Uno fue el francés Claude Chappe, que el siglo XVIII desarrolló una especie de telégrafo óptico, considerado el primer intento de usar la luz como vehículo de intercambio de información: su idea fue enfrentar torres separadas por decenas de kilómetros que reflejaban con espejos mensajes codificados en forma de luz.

Un haz de luz a traves de cables de vidrio

Casi un siglo antes, el irlandés John Tyndall descubrió que la luz podía viajar dentro de un chorro de agua. A partir de estas ideas previas, Kapany emprendió la tarea de desarrollar un material por el que la luz pudiese viajar adaptándose a su forma y curvatura. En 1953, durante los trabajos para su tesis, lo logró de forma incipiente.

En 1954 publicó su gran avance en la revista Nature, donde explicó cómo había lanzado un haz de luz a través de un conjunto de cables de vidrio de 75 centímetros de largo sin apenas perder señal en la transmisión. Aquellas fibras tenían un problema: la luz se disipaba y no lograba cubrir distancias mayores a 9 metros. Pero aun así, Kapany abrió el camino a que muchos otros investigadores trabajasen en ese campo, perfeccionando su invento, que más tarde él mismo bautizó como “fibra óptica” en un artículo en la revista Scientific American.

La fibra óptica es un filamento de vidrio muy largo y flexible con un grosor que es solo el doble que el de un cabello humano. A través de ese finísimo cable pueden viajar señales de luz láser codificadas que al llegar a su destino se descifran, reconstruyendo un mensaje. En general estas fibras se reúnen en haces más anchos rodeados por una cubierta plástica. En la actualidad es uno de los materiales más usados en las telecomunicaciones por su ligereza, flexibilidad, resistencia y por lo económica que es la materia prima a partir de la que se producen, la arena.

Fuente: Open Mind 

25 de octubre de 2018

Kinesiogramas: Cómo el efecto Colin crea la ilusión de movimiento

Bienvenidos a un nuevo post de "Conocer Ciencia": ciencia sencilla, ciencia divertida, ciencia fascinante... 

En esta ocasión os enseñare a crear una ilusión óptica animada que con una impresora y teniendo el papel indicado a continuación cualquiera puede hacerla en casa. Esta ilusión óptica recibe el nombre de kinesiograma. 
El kinesiograma es como un especie de efecto estroboscópico. En cada plantilla tenemos varias imágenes montadas en un mismo plano, intercaladas de tal forma que aplicando el filtro se mostrará una imagen ocultando las demás, y al mover el filtro se irán mostrando por orden una tras otra, creando sensación de movimiento. El kinesiograma también se conoce como escanimación, kinetic key o Efecto Colin Ord.


animada

ilusión


Lo primero que tenemos que hacer es comprar papel para transparencias tamaño A4 muy importante que sea el que la marca de la impresora recomienda para evitar problemas
óptica



Imprimimos esta plantilla en papel de transparencias , esta es la que se desliza sobre el dibujo en una hoja de papel normal
hazlo tu mismo



Después imprimimos en el mismo tamaño (no variar el tamaño o no funcionara) todas estas plantillas , no es necesario imprimir en papel de transparencia estas se imprimen en papel normal A4 .


Crea tu propia ilusión óptica animada

animada





ilusión






óptica





hazlo tu mismo






Crea tu propia ilusión óptica animada





animada






ilusión





óptica

hazlo tu mismo

Crea tu propia ilusión óptica animada






animada





ilusión






óptica

hazlo tu mismo


Y ahora solo tenemos que deslizar la plantilla de papel de transparencias por encima de cualquier otra de las plantillas en papel normal y crearemos el efecto de animación


Fuente:


Taringa

11 de octubre de 2018

Lambayeque (Perú): universitarios crean prototipo de gorra solar para recargar celular

En la visera cuenta con pequeños paneles para absorber la luz y producir energía.


Estudiantes de la Universidad Nacional Pedro Ruiz Gallo (UNPRG) de Lambayeque presentaron el prototipo de una gorra solar, en cuya visera tiene un panel solar con celdas fotovoltaicas que es capaz de producir energía, a partir de la luz del sol, para recargar un celular.

El Proyecto de Energía Solar Gor-Volste está dirigido a agricultores que en sus terrenos quedan incomunicados por la descarga de la batería de su celular y con esta gorra solar podrán recargar su equipo; también cuenta con focos led de alta eficiencia.

Además, los universitarios están en proceso de fabricación de un prototipo de gorra solar a la que se le colocará dispositivos Bluetooth, para escuchar música y responder llamadas.
El rector de la UNPRG, Jorge Oliva Núñez, manifestó que cuatro jóvenes investigadores de esta casa de estudios crearon ambos prototipos de gorras solares.

“La visera con panel solar tiene un tiempo de vida útil de entre 20 a 25 años, si es conservada adecuadamente, sin ser rayada”, comentó.

Posee dos puntos de conexión para el uso de cable y también entrada USB. "La gorra se puede utilizar también bajo sombra y su tiempo de carga es de tres horas y media; si el día está más soleado, carga más rápido. Se trata de un producto todo terreno", destacó.

En la parte posterior, la gorra solar cuenta con una batería de iones de litio, de una reconocida empresa japonesa, que tiene de 12 a 14 años de tiempo de vida. 

google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0