Latest Posts:

Mostrando las entradas con la etiqueta diamantes. Mostrar todas las entradas
Mostrando las entradas con la etiqueta diamantes. Mostrar todas las entradas

21 de noviembre de 2012

La fricción negativa sorprende a los investigadores

Si aprietas ligeramente con tu dedo en una mesa y lo deslizas sobre la superficie, verás que se mueve con bastante facilidad. Si aprietas más fuerte es más difícil deslizarlo ya que un contacto más firme genera más fricción. Pero ahora, investigadores de Estados Unidos y China han demostrado que si realizas el mismo experimento con la punta de un microscopio de fuerza atómica (AFM) sobre una superficie de grafito, puedes ver el efecto completamente opuesto – se reduce la fricción cuanto más aprietas.


Simulación de punta de diamante sobre grafito © Crédito: Smolyanitsky/NIST, Li/Tsinghua University

Para objetos grandes como dedos y mesas, la fricción entre dos superficies es el resultado de la rugosidad de la superficie, las impurezas, las capas de óxido y otros efectos diversos. A escala nanométrica, sin embargo, las interacciones entre átomos individuales se vuelven relevantes. Como resultado, las leyes de la nanotribología – el estudio de la fricción a nanoescala – pueden ser muy distintas de la fricción que experimentamos en el mundo macroscópico. Por ejemplo, la fricción puede variar, a veces, periódicamente con la red atómica cuando la aguja de un microscopio de fuerza atómica se mueve sobre la superficie. La nanotribología está convirtiéndose en un área cada vez más importante conforme científicos e ingenieros desarrollan minúsculas micromáquinas para una variedad de aplicaciones potenciales desde el ensamblaje de circuitos a la aplicación de medicamentos dirigidos.

El coeficiente de fricción mide cambios como una función de la carga. Puede ser muy variable en la nanoescala, con una fricción que aumenta de forma no lineal con la misma. Sin embargo, nunca se ha observado que fuese negativa – es decir, que la fricción aumente cuando se retira un objeto de la superficie.

Medidas rutinarias

Pero esto es exactamente lo que han encontrado Rachel Cannara, Zhao Deng y sus colegas del Instituto Nacional de Estándares y Tecnología (NIST) en Maryland y la Universidad Tsinghua en Pekín. Deng realizó el inesperado descubrimiento cuando medía la fricción entre la punta de diamante de un microscopio y una superficie de grafito como una función de la carga de la punta – una medida rutinaria realizada los nanotribólogos novatos que están aprendiendo los trucos del campo. “Estábamos observando distintos comportamientos que se sabe que aparecen, y repetíamos lo que ya se ha demostrado en la literatura”, explica Cannara.

Cuando Deng aumentó la carga de la aguja, encontró que, como se esperaba, la fricción aumentaba. Cuando redujo la carga de nuevo, sin embargo, apareció la sorpresa. En lugar de volver a su valor original, la fricción seguía aumentando. Esto sería similar a encontrar que cuanto menos aprietas la mesa, más difícil te resulta deslizar tu dedo sobre ella. Esto desafiaba todas las predicciones teóricas y es el primer ejemplo registrado de un material que muestra un coeficiente de fricción negativa. El aumento en la fricción siguió cuando se redujo la carga, hasta que la aguja se retiro por completo de la superficie.

Entonces, ¿qué está pasando? Investigaciones anteriores han demostrado que materiales como el grafito, que tienen una estructura atómica en capas, generan más fricción con la aguja que un AFM cuando solo tienen unos átomos de espesor. Esto se cree que se debe a que los materiales más finos son más flexibles. Cuando un material atómicamente fino toca la punta de un AFM, por tanto, se deforma más que su homólogo más grueso, incrementando de este modo el área de contacto y generando más fricción.

¿Superficie pegajosa?

El grupo de Cannara estaba trabajando con una masa de grafito, pero los investigadores sospechan que cuando se presionaba la aguja contra la superficie del material, la atracción intramolecular de las primeras capas atómicas sobre la punta de diamante era suficiente para que, cuando se reducía la carga, estas capas se elevasen ligeramente de la masa, pegándose a la punta y generando la fricción. Solo cuando se despegaba por completo la punta, el grafito volvía a su estado inicial. Dos simulaciones por ordenador diferentes demostraron que la hipótesis era plausible, aunque aún tienen que resolverse diferencias técnicas entre los resultados, señala Cannara.

Robert Carpick, cuyo laboratorio en la Universidad de Pennsylvania en Filadelfia fue parte del equipo que descubrió originalmente el aumento en la fricción del grosor atómico, está impresionado por los hallazgos del grupo de Cannara. “Creo que el artículo es bastante sólido”, dice. “Demuestra que el resultado es robusto y lo asocian de manera convincente a la adhesividad de la superficie”. El artículo original de Carpick revisó cuatro materiales distintos, todos con la misma estructura en capas y otros radicalmente distintos, encontrando que existía relación entre el grosor y la fricción en todos ellos.

A Carpick le gustaría ver ahora si los análisis de Cannara se aplican a otros materiales, tales como el sulfuro de molibdeno, con la misma estructura en capas. “Apostaría a que funciona igual”, señala. “Nuestro grupo, y otros, han visto estas finas capas exfoliantes bidimensionales compartir un comportamiento bastante común, aunque está claro que están hechos de átomos distintos y, por tanto, las energías químicas de interacción con la punta serán distintas”.

La investigación se publica en la revista Nature Materials.

Tomado de:

Ciencia Kanija

12 de octubre de 2012

Descubren un 'planeta de diamante', dos veces más grande que la Tierra

Científicos de la Universidad de Yale (EEUU) han descubierto un planeta rocoso compuesto de grafito y diamante, dos veces más grande que la Tierra y con una masa ocho veces mayor.

Recreación del planeta recién descubierto. | Reuters
Recreación del planeta recién descubierto. | Reuters

"La superficie de este planeta parece estar cubierta de grafito y el diamante en vez de agua y granito", señaló el investigador principal, Nikku Madhusudhan, de la Universidad de Yale.

El planeta, llamado 55 Cancri e, es uno de los cinco planetas que orbitan en torno a una estrella similar al Sol en la constelación de Cáncer, a 40 años luz de la Tierra, relativamente cerca, por lo que se puede ver a simple vista.

El planeta orbita tan rápido que un año dura 18 días, frente a los 365 de la Tierra, es además extremadamente caliente ya que, según los investigadores, su temperatura alcanza los 2.148 grados centígrados.

No es la primera vez que se descubre un planeta de diamante, pero es el primero que se encuentra orbitando una estrella similar al Sol, tan cercano a la Tierra y de un tamaño superior.

El plantea fue observado por primera vez el año pasado y los científicos asumieron inicialmente que podría tener una composición química similar al agua, pero tras nuevas investigaciones determinaron que el planeta no tiene agua.

"Parece estar compuesto principalmente de carbono (como el grafito y el diamante), hierro, carburo de silicio, y, posiblemente, algunos silicatos", apuntan los investigadores que publicarán el estudio en la revista Astrophysical Journal Letters.

El estudio calcula que al menos un tercio de la masa del planeta, equivalente a tres veces la masa de la Tierra, podría ser diamante. Este descubrimiento significa que "ya no se puede asumir que los planetas rocosos distantes tienen componentes químicos, interiores, ambientes, o biologías similares a las de la Tierra", señaló Madhusudhan.

Fuente:

El Mundo Ciencia

21 de agosto de 2012

Crean un material más duro que el diamante


Investigadores del Instituto Carnegie han inventado un nuevo material que amalgama estructuras cristalinas y caóticas del carbono para crear algo más duro que el diamante.

Para crear el nuevo material –que asumimos que rompió la escala de Mohs– el equipo de Carnegie construyó con los átomos de carbono una estructura esférica llamada carbono-60, luego conectaron todas estas esferas rellenando los espacios vacíos con un solvente llamado xileno y comenzaron a presionar el material para hacerlo más fuerte.

Bajo una presión de 320.000 atmósferas (o 230.400.000 mm Hg) algunas de las esferas de carbono-60 comienzan a colapsar en racimos de átomos de carbono mientras que otras mantienen su estructura, formando una red de enlaces extremadamente fuertes. El resultado es una forma de carbono jamás antes vista que mezcla estructuras cristalinas y caóticas que sólo habían sido teorizadas anteriormente por los geólogos.

“Hemos creado un nuevo tipo de material de carbono que es comparable al diamante en su incapacidad para ser comprimido”, aseguró el jefe del proyecto Lin Wang. “Una vez creado bajo estas presiones extremas, este material puede existir en condiciones normales, lo que significa que puede ser usado para una amplia gama de aplicaciones prácticas”.

Fuente:

9 de diciembre de 2011

Planetas formados de diamantes en la Vía Láctea

Recreación de un posible planeta compuesto de diamante en la Vía Láctea. | NASA

Recreación de un posible planeta compuesto de diamante en la Vía Láctea. | NASA

Los diamantes, la piedra más preciada de este planeta, por lo que ha provocado sangrientas guerras, no es exclusiva de la Tierra. Investigadores de las Universidades de Manchester (Reino Unido) y de Ohio (EE. UU.) aseguran en un nuevo trabajo que en la Vía Láctea hay planetas de un tamaño mayor a nuestro -supertierras- que podrían estar compuestos hasta un 50% por diamantes.

El pasado mes de agosto, un equipo de CSIRO (Organización para la Investigación Industrial y Científica de la Mancomunidad de Australia) descubrió uno de estos astros diamante a 4.500 años de la Tierra, con sólo 60.000 kilómetros de diámetro, pero según este nuevo trabajo podrían ser muchos más de lo que se piensa. "Es difícil saber cuántos hay, pero pensamos que suponen un porcentaje de todos los planetas terrestres que existen", señala Wendy Panero a ELMUNDO.es, de la Universidad de Ohio.

Para llegar a esta conclusión, los científicos no miraron hacia el Cosmos, sino que realizaron un experimento en un laboratorio de la Universidad de Ohio, donde reconstruyeron las temperaturas y las presiones que hay bajo la corteza terrestre para determinar cómo se forman estas piedras preciosas y entender lo que pasa con el carbono que hay en otros planetas del Sistema Solar.

Ricos en carbono

Panero y su alumno Cayman Unterborn utilizaron las conclusiones de estos experimentos para construir modelos informáticos de cómo se forman los minerales en astros más ricos en carbono que el nuestro. "Es posible que planetas que tienen como 15 veces la masa de la Tierra tengan hasta un 50% compuesto por diamantes", asegura Unterborn, que presentó estos resultados en la reunión de la American Geophysical Union.

"Nuestras conclusiones sugieren que los planetas ricos en carbono pueden formar una corteza y un manto como ocurrió aquí, pero en su caso el núcleo sería como el acero y el manto tendría una composición muy similar a la de los diamantes", explica Panero. En la Tierra, sin embargo, el núcleo es sobre todo de hierro, mientras el manto es de silicatos minerales procedentes de los elementos que había en la nube de polvo que formó el Sistema Solar.

Estas 'joyas' cósmicas nunca podrían ser habitables. Su química es muy distinta de la que hace posible la vida. El interior se ha congelado con gran rapidez, no hay tectónica de placas, ni magnetismo, ni atmósfera. "Son planetas muy fríos y oscuros", asegura la geóloga.

Experimento de laboratorio

Panero y sus alumnos tomaron hierro, carbono y oxígeno y lo sometieron a una gran la presión y la temperatura que hay en el interior de la Tierra. Cuando observaban la muestra por el microscopio, el oxígeno se fusionó con el hierro, creando el óxido de hierro y los laterales de la muestra se convirtieron en diamantes.

Hasta ahora, ya se han descubierto más de 500 planetas fuera del Sistema Solar, pero se sabe muy poco aún sobre su composición interna. "Lo que hemos hecho es echar una mirada a los elementos volátiles, como el hidrógeno y el carbón, que interactúan dentro de la Tierra, porque cuando enlazan con oxígeno, usted consigue las atmósferas", argumenta Panero.

La investigación de Ohio sugiere que los planetas tipo Tierra, pero de diamante, se pueden formar en nuestra galaxia. Exactamente cuántos puede haber y su composición interna es algo que aún no se sabe.

Fuente:

El Mundo Ciencia

19 de agosto de 2011

En las llamas de las velas se forman 1,5 millones de diamantes por segundo


En poesía no es difícil encontrar metáforas y comparaciones que ligan el fuego con diferentes piedras preciosas. Por ejemplo, las ascuas de una hoguera recuerdan a rubíes incandescentes. El parpadeo de una llama, a los destellos de los diamantes. El famoso científico Michael Faraday, en sus conferencias celebradas del siglo XIX sobre “La historia química de una vela“, dijo: “Usted tiene la belleza resplandeciente del oro y la plata, y el brillo aún mayor de las joyas, como el rubí y el diamante, pero ninguno de éstas son rivales de la brillantez y la belleza de la llama. ¿Qué diamante puede brillar como el fuego?

Pero ahora la ciencia ha hecho que esta metáfora adquiera más consistencia.

Y es que, según un estudio de la Universidad de St Andrews llevado a cabo por Wuzong Zhou, en las llamas de las velas se forman pequeñas partículas de diamante: concretamente 1,5 millones de nanopartículas de diamante se crean cada segundo en la llama de una vela mientras se quema.

Usando una nueva técnica de muestreo que él mismo ha desarrollado, Zhou fue capaz de eliminar las partículas del centro de la llama (algo nunca antes logrado con éxito), encontrándose para su sorpresa que la llama de una vela contiene las cuatro conocidas formas del carbono.

En la parte inferior de la llama ya se sabía que existían moléculas de hidrocarburos, que se convierte en dióxido de carbono en la parte superior de la llama. Ahora, tanto nanopartículas de diamante como partículas de fullerenos se han descubierto en el centro de la llama, junto con carbono grafítico y amorfo.

El descubrimiento podría conducir a futuras investigaciones sobre cómo los diamantes, una sustancia clave en la industria, se podrían crear de forma más barata, y de una manera más ecológica.

Zhou señaló:

Desafortunadamente las partículas de diamante se queman en el proceso, y se convierte en dióxido de carbono, pero esto va a cambiar la manera de ver la llama de una vela para siempre.

Vía | University of St Andrews

Tomado de:

Xakata Ciencia


4 de agosto de 2011

Las impurezas de los diamantes revelan el incio del choque entre continentes

Especial: Planeta Tierra

Un estudio en la revista «Science» explica cómo actúan a modo de «cápsulas del tiempo» aportando información de hace más de 3.500 millones de años.

Protegidas en el interior de los duros diamantes, las impurezas son minerales inalterados que pueden contar la historia del pasado lejano de La Tierra. Los investigadores han analizado los datos de más de 4.000 de estas inclusiones minerales para encontrar que los continentes iniciaron el ciclo (llamado ciclo de Wilson) de separación y choque hace unos 3.000 millones de años.

La investigación, que se publica este viernes en la revista 'Science'. El autor principal, Steven Shirey del Department of Terrestrial Magnetism de la Carnegie Institution, ha explicado que "el ciclo de Wilson es responsable del crecimiento de la corteza continental de La Tierra, las estructuras continentales que vemos hoy, la apertura y cierre de las cuencas oceánicas a través del tiempo, la formación de montañas y la distribución de los minerales y otros materiales de la corteza. Pero hasta hoy ha habido equívocos sobre cuándo comenzó dicho ciclo. Utilizamos las impurezas de los diamantes porque estos son cápsulas de tiempo perfectas, ofrecen información de hace más de 3.500 millones de años, información sobre la evolución de la atmósfera, el crecimiento de la corteza continental y el inicio de la tectónica de las placas"

El coautor del estudio, Stephen Richardson, de La Universidad de Ciudad del Cabo, ha señalado que "es asombroso que podamos usar las partículas minerales más pequeñas que pueden ser analizadas para revelar el origen de algunas de las principales características geológicas de La Tierra".

Los cratones, el origen de los diamantes

Los diamantes más grandes proceden de cratones, las formaciones más antiguas de las zonas continentales interiores. Los cratones contienen las rocas más antiguas del planeta y se extienden hacia el manto a más de 200 kilómetros, donde las presiones son lo suficientemente altas y las temperaturas suficientemente bajas para formar y almacenar diamantes durante miles de millones de años.

Los diamantes llegaron a la superficie accidentalmente durante las erupciones volcánicas de magma de las profundidades, que se solidificaba en roca llamada kimberlita. Las inclusiones en los diamantes se encuentran en dos variedades de roca: peridotíticas y eclogíticos.

La peridotita es el tipo de roca más abundante en el manto superior, mientras que la eclogita parece ser el remanente de la corteza oceánica reciclada en el manto por el hundimiento de las placas tectónicas. Shirey y Richardson, utilizando sus propio trabajos con otros investigadores publicados en más de 20 documentos durante un período de 25 años, revisaron los datos de más de 4.000 inclusiones de silicato -el material más abundante de la Tierra- y más de 100 inclusiones de sulfuro de cinco antiguos continentes. Se centraron en investigar cuándo fueron encapsuladas las inclusiones y la tendencia de composición asociada.

Las composiciones varían y dependen de la transformación geoquímica que los componentes sufrieron antes de ser encapsulados. Se compararon dos sistemas utilizados para fechar inclusiones, las técnicas del renio-osmio y del samario-neodimio. Ambas se basan en isótopos naturales que se desintegran lentamente, pero de forma predecible, lo que los convierte en excelentes relojes atómicos para determinar edades absolutas.

Los investigadores encontraron que hace 3.200 millones de años, solo se encuentran diamantes con composiciones peridotíticas, mientras que después de dicha fecha, son más abundantes los diamantes eclogíticos. "La explicación más simple es que este cambio se produjo a partir de la subducción inicial de una placa tectónica bajo el manto profundo de otra, puesto que los continentes comenzaron a chocar a una escala similar a la del ciclo actual. Esta transición marca el inicio del ciclo de Wilson", ha concluido Richardson.

Fuente:

ABC

16 de diciembre de 2010

¿Un planeta de diamantes?



Wasp-12b nos llamaba la atención por su terriblemente calurosa temperatura de 2315 grados Celsius, la cual lo convertía en un hallazgo sin precedentes para nosotros, aunque la temperatura podría no ser el único récord que Wasp-12b es capaz de romper.

Según informa la BBC, Nikku Madhusudhan y su equipo de astrónomos han publicado un trabajo en la revista Nature en el que afirman que las altas proporciones relativas de carbono existentes en Wasp-12b perfectamente podrían causar que el corazón de este planeta consistiera esencialmente de diamantes.

En nuestro planeta la proporción del carbono en relación con la del oxígeno es de 1 a 2. Sin embargo, en Wasp-12b existe más carbono de oxígeno, algo que, sumado a la ausencia de agua en el planeta podría hacer posible que un alto porcentaje del núcleo del planeta estuviera conformado por diamantes.

“Podrías ver masas terrestres y montañas hechas de diamantes”, afirma Madhusudhan, colocando al planeta en el centro de atención.

Sin embargo, esto no tiene ningún provecho para nosotros. Además de la distancia del planeta (1.200 años luz) su calor impide cualquier otro contacto que no sea el visual a través de telescopios de última tecnología. Incluso estos no son suficientes, pues la tecnología actual nos impide visualizar el planeta correctamente, por lo que esto es más especulación que dato.

Tomado de:


google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0