Latest Posts:

Mostrando las entradas con la etiqueta capa de ozono. Mostrar todas las entradas
Mostrando las entradas con la etiqueta capa de ozono. Mostrar todas las entradas

26 de diciembre de 2019

China emite un gas prohibido que destruye la capa de ozono

El incremento de triclorofluorometano (CFC-11) se produce en las áreas industriales de la zona este de China.


Un equipo internacional pudo determinar el origen de las emisiones de un peligroso gas que había sido prohibido desde hace años por considerarse un potente destructor de la capa de ozono. El año pasado, un observatorio de Hawái detectó el repunte de los niveles de triclorofluorometano o CFCs, pero los científicos ignoraban su procedencia. Ahora, una investigación publicada en la revista Nature afirma tener la respuesta a esta interrogante.

Al menos entre el 40 % y el 60 % del incremento de las emisiones en los últimos años de CFC-11 provendrían de la zona este de la China continental, según concluye la investigación. Todo parece indicar que el sector de la construcción del país asiático usa clandestinamente este producto, lo que podría ralentizar la recuperación de la atmósfera terrestre.

¿Qué es el CFC-11 y por qué es peligroso?

Se trata de tipo de CFCs, que es una serie de sustancias químicas desarrolladas inicialmente como refrigerantes en la década de 1930. Se utilizaron también para formar agujeros en productos de espuma blanda, como almohadas, alfombras acolchadas, cojines y asientos, rellenos en autos e incluso en la construcción de edificios. La utilización de productos de espumas aislantes aumentó en el último cuarto de siglo debido al interés con respecto a la conservación de energía.

A los científicos les llevó décadas descubrir que cuando los CFCs se descomponen en la atmósfera, liberan átomos de cloro que rápidamente destruyen la capa de ozono que nos protege de la luz ultravioleta. Recién a mediados de la década de 1980 se descubrió el gran agujero en este manto protector.

En 1996, los países más desarrollados dejaron de producir CFC-11 en aplicación del Protocolo de Montreal. Tras una moratoria para los países en vías de desarrollo, su producción se prohibió en todo el planeta en 2010.

El artículo completo en: El Comercio (Perú)

23 de julio de 2014

¿Qué le pasaría a la Tierra después de una Guerra Nuclear?

Hemos visto en muchas ocasiones qué sucedería tras una guerra nuclear entre las dos grandes superpotencias, pero ¿Qué es lo que podría suceder después de una guerra de nivel regional, entre dos países poseedores de armamento nuclear como pueden ser India y Paquistán? Un equipo técnico de EE.UU: ha presentado un estudio sobre cuáles serían las consecuencias.



El supuesto contempla la explosión de simplemente cien ojivas nucleares del tamaño de la bomba lanzada en Hiroshima, sobre el subcontinente indio. Cinco megatones de carbono negro entrarían en la atmósfera inmediatamente, absorbiendo el calor del sol antes de que pudiera llegar a la Tierra.

Un año después del hipotético conflicto nuclear la temperatura de la superficie de la Tierra caería unos dos grados, tras cinco años nuestro planeta sería tres grados más frío de lo que es actualmente. A los veinte años de la guerra, la temperatura media seguiría un grado por debajo de la temperatura media actual. 

La bajada de las temperaturas reduce la cantidad de agua de lluvia recibida, un año después de la guerra, las precipitaciones se han reducido un nueve por ciento, veintiséis años después la Tierra recibe un cuatro y medio menos de lluvia.

Entre dos y seis años después la temporada de crecimiento de los cultivos se ha reducido entre diez y cuarenta días dependiendo de la región.

Las reacciones químicas en la atmósfera aumentan el agujero de la capa de ozono que nos protege de la radiación ultravioleta. Cinco años después de la guerra la capa de ozono se ha vuelto entre un 20 y un 25 por ciento más delgada. Diez años después la capa de ozono se ha recuperado, pero continúa siendo un ocho por ciento más delgada.

La protección UV ha disminuido produciendo más quemaduras solares y un aumento de la incidencia de cáncer entre la población. 

Para evitar esta supuesta catástrofe, la comunidad científica quiere estimular a los países a destruir las aproximadamente 17.000 armas nucleares que todavía mantienen.

Vía | popsci

Tomado de:

Xakata Ciencia

20 de mayo de 2013

¿Qué pasaría si el centro de la Tierra se enfriara?

Nucleo de la Tierra

El núcleo de la Tierra tiene una porción interna sólida, rodeada por una capa líquida de unos 2.266km de gruesa.

Las corrientes de convección en esa parte externa del núcleo son las que generan el campo magnético de la Tierra.

Si el núcleo del planeta se enfriara y solidificara, el campo magnético se reduciría a casi nada y las partículas cargadas del viento solar podrían llegar a la atmósfera superior.

Eso podría desgastar la capa de ozono y exponernos a niveles de luz ultravioleta letales.

Lo que es quizás sorprendente es que la parte externa del núcleo está efectivamente congelándose, pero a un ritmo de 1 milímetro al año, así que pasarán 2.000 millones de años antes de que se congele del todo.

Fuente:

BBC Ciencia

3 de diciembre de 2012

El agujero de ozono afecta el crecimiento de los árboles

Ejemplares de araucaria (gentileza Ianigla)

Árboles emblemáticos de la Patagonia, como la araucaria, crecieron menos por el agujero de ozono.

En los años ’80 los científicos descubrieron que una zona de la estratosfera conocida como la capa de ozono, vital para proteger a la Tierra de los rayos del Sol, tenía niveles anormalmente bajos en algunas partes, en especial en una extensa zona sobre la Antártida.

En vista de que la capa de ozono absorbe casi el 99% de la radiación ultravioleta (UV) que llega hasta la Tierra el descubrimiento de este enorme agujero generó gran preocupación por los efectos nocivos que podrían provocar estos rayos solares en el hemisferio sur. 

Los líderes mundiales acordaron tomar medidas para frenar el problema y a través de la firma del llamado Protocolo de Montreal (1987) eventualmente lograron reducir la emisión de los compuestos químicos que estaban generando la pérdida de ozono, lo que impidió que el agujero siga creciendo.

Lo que no sabían los expertos entonces es que los efectos de este fenómeno irían mucho más allá de un aumento en los niveles de radiación UV.

Casi treinta años después de que fuera detectado, un equipo internacional de científicos halló evidencia de que el agujero en la capa de ozono provocó un cambio climatológico que afectó notoriamente el crecimiento de árboles en las regiones más australes del mundo.

El estudio, liderado por el ingeniero forestal argentino Ricardo Villalba, fue tapa de la edición de noviembre de la revista científica Nature Geoscience

Villalba, director del Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (Ianigla), contó a BBC Mundo que en las últimas tres décadas los bosques más emblemáticos de la Patagonia tuvieron la tasa de crecimiento más baja de los últimos 600 años, como consecuencia del agujero de ozono.

Cómo están conectados

El motivo de esta baja de crecimiento es una caída de entre el 20% y el 30% en los niveles de precipitaciones durante los últimos 20-30 años, explicó Villalba.

El agujero en la capa de ozono.

El agujero en la capa de ozono sobre la Antártida se ha estabilizado.

Los expertos investigaron si esta disminución de lluvias estaba relacionada con fenómenos climatológicos como El Niño o La Niña, pero no encontraron evidencia que los conectara.

En vez, descubrieron que la caída en las precipitaciones estaba asociada a otro fenómeno conocido como la Oscilación Antártica del Hemisferio Sur (OAHS).

"La OAHS es como un anillo de diferencias de presiones que se forma en la atmósfera del continente antártico y controla la variabilidad climática en el hemisferio sur", detalló el experto.

El ciclo consiste de dos fases: la positiva, durante la cual los vientos del oeste –los que traen las lluvias- se mueven hacia el sur, provocando una disminución de las precipitaciones, y la negativa, durante la cual los vientos se mueven hacia el norte y vuelven las lluvias.

Los científicos creen que el agujero en la capa de ozono generó un cambio en el ciclo de la OAHS, prolongando la fase positiva.

Eso, según Villalba, habría provocado la mayor sequía y un aumento de las temperaturas en las zonas alrededor de la Antártida.

Efecto contrario

El equipo del Ianigla descubrió esta anomalía luego de estudiar los anillos de araucarias y cipreses, dos de los árboles más característicos de la Patagonia, que viven entre 500 y 800 años.

Hallaron que tanto en Argentina como en Chile estos árboles habían sufrido un fuerte retroceso en su crecimiento en las últimas tres décadas.

Ante esta evidencia, los expertos decidieron contactarse con sus pares del otro lado del mundo, en Australia y Nueva Zelanda, para ver si esos países australes registraban un patrón parecido.

Muestreando ejemplares de ciprés (gentileza Ianigla)

Los investigadores analizaron los anillos de más de 3.000 árboles en Argentina, Chile, Nueva Zelanda y Australia.

Los resultados fueron sorprendentes: la investigación mostró una clara alteración en la evolución de los árboles desde la década del ’80. Pero mientras que los bosques patagónicos habían frenado su crecimiento los de Oceanía crecieron más que nunca.

¿Cómo se explica? "Nuestros colegas australianos y neozelandeses analizaron los anillos de árboles en bosques húmedos y fríos, que se beneficiaron con las temperaturas más altas", explicó Villalba.

En cambio, los investigadores argentinos realizaron sus estudios en el norte patagónico, donde el clima es más seco.

"El paso siguiente es investigar el impacto del agujero de ozono sobre otras especies y en otras regiones", anticipó el científico.

Según los especialistas, si el Protocolo de Montreal se sigue aplicando con éxito para 2050 la capa de ozono podría volver a sus niveles normales y los agujeros se cerrarían.

Lo que no pueden anticipar los expertos es cuánto daño habrá ocurrido para entonces.

Fuente:

BBC Ciencia

Contenido relacionado

14 de noviembre de 2012

Smog (¿y qué es eso?)

http://londonincognito.files.wordpress.com/2011/05/smog-52.jpg
La traducción de este término inglés sería "neblumo", pero considero que es mejor emplear el anglicismo como tal. La palabra viene de smoke (humo) y fog (niebla). Existen dos tipos de smog, el fotoquímico y el sulfuroso. El caso más sonado de smog sulfuroso ocurrió en Londres, y produjo varias muertes. El smog sulfuroso es fácil de evitar, una vez conocida su causa, que eran las pequeñas cantidades de azufre que se encontraban en el carbón utilizado en las calefacciones. Al quemar el carbón para obtener calor, el azufre presente se transformaba en dióxido de azufre (por contacto con el oxígeno del aire), de manera que salía  a la atmósfera en forma de gotitas de ácido sulfúrico, dióxido de azufre y partículas en suspensión.

El smog fotoquímico se forma en ciudades tipo Los Ángeles, que tienen una disposición geográfica determinada, que hace que en temporadas de anticiclón los contaminantes emitidos permanezcan en la atmósfera urbana y reaccionen. Al incidir la luz solar sobre los gases que expulsan los vehículos, que suele contener óxidos de nitrógeno tóxicos (en cualquier combustión se forman, o bien derivados del monóxido de carbono por combustión incompleta, o óxidos nitrogenados ya que en el aire de nuestra atmósfera está presente el nitrógeno en una proporción de aproximadamente el 79%), se generaban especies radicalarias que reaccionaban a su vez con el oxígeno normal en el aire produciendo ozono. 
http://www.engin.umich.edu/~cre/web_mod/la_basin/smog.jpg

Pero, si el ozono es bueno, nos protege de la radiación del sol y hay que cuidar la capa de ozono... Efectivamente, el ozono es "bueno" en altas capas de la atmósfera, en la famosa capa de ozono donde actúa como filtro de la radiación ultravioleta. Pero el ozono en la troposfera o capa baja de la atmósfera es un contaminante que causa serios perjuicios sobre la salud humana. Se observan picos en la actividad de las especies radicalarias fotoquímicas: a primera hora cuando todo el mundo se dirige al trabajo se acumulan los contaminantes de los tubos de escape, a mediodía cuando el sol incide con más fuerza se generan el ozono y las especies nitrogenadas de radicales, y vuelve a descender según la luz solar desaparece.
 
http://www.tecnun.es/asignaturas/Ecologia/Hipertexto/10CAtm1/10-5Fot.jpg

Para evitar el smog sulfuroso, ha de tenerse más cuidado para que el carbón no presente trazas ni restos de azufre. El fotoquímico tiene más miga... De hecho, los vehículos llevan instalado en el tubo de escape una doble cámara para evitar que se produzcan derivados de óxidos de nitrógeno o del monóxido de carbono. Consiste en un recipiente de acero inoxidable que contiene en su interior una pieza cerámica dividida en celdillas (para aumentar la relación superficie/volumen) recubiertas por catalizadores, es decir, metales nobles como el rodio o el platino, que lo que hacen es acelerar las reacciones para evitar contaminar (o al menos contaminar menos).
 
Fuente:
 

24 de septiembre de 2012

¡Peligro!: Respirar aire en Europa acorta la vida

Boina de contaminación en Madrid. | Diego Sinova
Boina de contaminación en Madrid. | Diego Sinova
El aire europeo está repleto de partículas nocivas. Esa conclusión se puede extraer del estudio presentado este lunes por la Agencia Europea de Medio Ambiente que evalúa la calidad del aire y la presencia de contaminantes que afectan a la salud de las personas.

El informe se basa en datos del año 2010 y analiza la presencia de ocho tipos de sustancias (partículas contaminantes en suspensión, ozono, dióxido de nitrógeno, CO2, metales pesados, benzeno y benzopireno y dióxido de sulfuro).

Los datos extraidos son preocupantes. Inquieta especialmente la exposición de una gran parte de la población europea a partículas contaminantes en el aire puesto que son unas de las más nocivas para la salud, al perjudicar a zonas sensibles de las vías respiratorias. El estudio señala que casi un tercio de la población urbana del continente está expuesto a concentraciones excesivas de estos contaminantes, según los límites anuales de la Unión Europea. Aún más alarmante es el dato si se compara con el límite máximo impuesto por la Organización Mundial de la Salud (OMS). En este caso es el 95% de los habitantes de Europa el que se enfrenta a estas partículas perjudiciales para su salud. Los peor parados en este caso son los países de Europa del Este.

La UE ha dado importantes pasos en la reducción de las emisiones de gases contaminantes. Sin embargo, a la vista de los resultados, aún queda mucho por hacer. "En muchos países, las concentraciones de contaminantes atmosféricos todavía son superiores a los límites legales y recomendados establecidos para preservar la salud de los ciudadanos europeos", explica la profesora Jacqueline McGlade, directora ejecutiva de la AEMA.

Para la AEMA este es un paso esencial para apoyar futuras políticas de lucha contra la contaminación. Una lucha prioritaria, puesto que la contaminación atmosférica reduce la esperanza de vida humana aproximadamente en dos años en las ciudades y las regiones más contaminadas.

El ozono es otro de los elementos más peligrosos presentes en el aire, puesto que puede provocar problemas respiratorios e incluso muerte prematura. En este caso, son los países mediterráneos los más afectados por este tipo de contaminación. Una vez más, los datos tampoco son halagüeños: en las ciudades el 17% de los habitantes europeos está expuesto a niveles excesivos según el límite de la UE, mientras que basándose en el de la OMS, una vez más el dato, un 97%, produce escalofríos.

Otros datos reflejan luces y sombras: por un lado, las emisiones de dióxido de azufre se han reducido considerablemente gracias a las políticas de la UE que ha exigido tecnologías de depuración de las emisiones y un menor contenido de azufre en los combustibles; por otro, preocupa la exposición excesiva de casi un tercio de la población al benzopireno, peligrosas partículas carcinógenas.

Resultados de España

España no es de los países peor parados en el informe de la agencia. Incluso refleja una destacada mejoría en cuanto a la presencia de partículas contaminantes en el aire junto a Gran Bretaña, Suecia y Portugal.
No ocurre lo mismo en el nivel de ozono, puesto que se encuentra entre los países con mayor cantidad de emisiones, sin llegar a superar el límite establecido por la UE.

Queda mucho camino por recorrer para proseguir con la reducción de contaminantes perjudiciales para la salud de las personas. Todo eso para conseguir que 2013 "sea el año de la atmósfera", en palabras del comisario de Medio Ambiente Janez Potočnik.

Fuente:

El Mundo Ciencia


 

12 de marzo de 2012

Muere el hombre que descubrió el agujero de la capa de ozono


Sherwood Rowland

Sherwood Rowland escribió su polémica investigación sobre el desgaste de la capa de ozono en 1974.

Fue el primero que sospechó que la capa de ozono que protege a la Tierra se estaba acabando debido a sustancias químicas fabricadas por el hombre. El estadounidense Sherwood Rowland, de 84 años de edad, murió este lunes dejando una estela de investigaciones científicas que, no obstante, fueron ridiculizadas en su momento.

En 1974 Rowland trabajaba como profesor de química en EE.UU. cuando escribió un polémico artículo sobre los peligros de los CFC, los cloroflurocarbonos. La comunidad científica y la industria químico no sólo no lo tomaron en serio sino que se burlaron de sus hallazgos.

Veinte años después el científico recibía el premio Nobel de química por su trabajo.

Investigador de la Universidad de California en Irvine (UCI) compartió el premio con Mario Molina del Instituto de Tecnología de Massachusetts y Paul Crutzen, del Instituto Max Planck de Química en Mainz, Alemania.

"Hemos perdido a nuestro mejor amigo y mentor", señaló el decano de Ciencias Físicas de la UCI Kenneth Janda, al conocer la muerte de Sherry como le llamaban sus amigos.

"Salvó al mundo de una enorme catástrofe. Nunca vaciló en su compromiso con la ciencia, la verdad y la humanidad", subraya Janda.

Rowland y los cálculos de sus colegas llevaron a finales de la década de 1970 a algunas restricciones al uso de los CFC, que eran ampliamente utilizados como refrigerantes, en aerosoles, solventes y agentes para hacer espumas.

Sin embargo, no fue hasta 1985 cuando se le dio impulso a un tratado de prohibición de los CFC, el llamado Protocolo de Montreal. Ese año se confirmó que los productos químicos estaban provocando un agotamiento severo o "agujero" en la capa de ozono sobre la Antártida.

"Salvó a la Tierra de una tragedia"

Agujero en la capa de ozono

El agujero de la capa de ozono en la Antártida se ha estabilizado.

El ozono, una molécula que se compone de tres átomos de oxígeno, es el responsable de filtrar la radiación ultravioleta dañina del sol.

El gas se produce y se destruye constantemente en la estratosfera, a unos 30 km sobre la Tierra. En una atmósfera no contaminada ese ciclo de producción y descomposición se encuentra en equilibrio.

Los CFC y otras sustancias químicas restringidas en Montreal ascendían a la estratosfera y liberaban bromo y átomos de cloro que luego actuaban como catalizadores de la descomposición del ozono.

"Mario y yo nos dimos cuenta de que esto no era sólo una cuestión científica, sino un problema ambiental potencialmente grave que implicaría el agotamiento sustancial de la capa de ozono estratosférica", detallaba Rowland.

"Sistemas biológicos enteros, incluyendo los seres humanos, estarían en peligro al estar expuestos a los rayos ultravioletas", explicaba el científico.

El agujero de la capa de ozono sobre la Antártida, que aparece en la primavera austral debido a la meteorología singular del polo, se ha estabilizado en los últimos años.

El agujero correspondiente al Ártico alcanzó su medida más grande en 2011, pero al igual que el sur se espera una recuperación a largo plazo ahora que el uso de los CFC está muy restringido.

Fuente:

BBC Ciencia

Contenido relacionado

2 de marzo de 2012

La luz de la Tierra reflejada en la Luna permite ‘redescubrir’ la vida

  • Las mediciones pueden servir para buscar bioseñales en planetas extrasolares
  • Los análisis permiten identificar la vegetación, el oxígeno, el ozono y el agua del aire, así como los océanos y las nubes

Para buscar algo es muy útil saber qué aspecto tendrá lo que uno busca. ¿Qué firmas biológicas podrían identificar los científicos que observan los planetas extrasolares? Muchos de esos cuerpos tienen tamaño terrestre y están en zonas alrededor de sus astros donde podría haber agua en estado líquido, pero ¿qué se podría ver desde aquí como prueba de vida allí? Unos astrónomos han ideado una estrategia para identificar marcadores de actividad biológica en la luz de nuestro propio planeta, donde, obviamente saben que existe. Para probarla se han servido de la Luna, apuntando hacia ella el VLT, el mayor conjunto de telescopios terrestres, instalado en Chile, y han analizado la luz reflejada en el satélite natural desde el planeta, logrando reconocer así áreas de vegetación, el oxígeno, ozono y agua del aire así como los océanos y las nubes. Ciertas combinaciones de gases en la atmósfera son indicadores de actividad de seres vivos.

Esquema de las observaciones de la luz de la tierra reflejada en la superficie de la Luna para buscar en ella marcadores de actividad biológica. / ESO / L.CALÇADA

“Hacemos un truco: utilizamos el brillo de la Tierra para observarla como si fuera un exoplaneta”, explica el líder del equipo, Michael Sterzik, astrónomo del Observatorio Europeo Austral (ESO). “El Sol ilumina la Tierra y su luz se refleja a la superficie lunar, que actúa como un gigante espejo que vuelve a reflejarla hacia nosotros, y eso es lo que hemos observado con el VLT”, añade.

La técnica desarrollada por estos investigadores es muy prometedora, asegura el ESO, pero habrá que esperar para probarla en otros sistemas planetarios con telescopios más potentes que los actuales (cada uno de los VLT mide 8,2 metros de diámetro), como el futuro gigante europeo E-ELT, de unos 40 metros de diámetro. Aunque, tal vez, ni siquiera sea suficiente esa enorme máquina astronómica para estos sutiles análisis y haya que esperar a tener nuevos potentes telescopios espaciales que se están planeando. De momento, se trata de ir haciendo pruebas.

La espectropolarimetría, como se llama la técnica empleada por estos científicos, “puede llegar a decirnos si una vida vegetal simple, basada en procesos fotosintéticos, ha emergido en algún otro lugar del Universo”, señala Sterzik, advirtiendo que “desde luego no estamos pensando en buscar hombrecillos verdes o indicios de vida inteligente”.

En la atmósfera terrestre, los principales gases producidos biológicamente son el oxígeno, el ozono, el metano y el dióxido de carbono. Por supuesto todos ellos se pueden producir sin la presencia de vida en el planeta, pero la existencia simultánea de ellos en proporciones determinadas son biomarcadores y eso es los han buscado y analizado Sterzik, Stefano Bagnulo (del Observatorio Armagh británico) y Enric Pelle (del Instituto de Astrofísica de Canarias).

La superficie lunar actúa como un espejo gigante

Con la técnica de espectropolarimetría, en lugar de fijarse solo en cómo brilla la luz reflejada en diferentes colores, se mira también la polarización de la luz, cuando su campo eléctrico y su campo magnéticos tienen una orientación determinada. Con sus análisis, los científicos identifican en áreas locales de la luz terrestre las firmas del oxígeno, del ozono y del agua, datos que utilizan para caracterizar las propiedades de las nubes y de las partículas en suspensión, según explican en la revista Nature.

El experto Christoph U.Keller (Universidad de Leiden, Holanda) advierte en un artículo en Nature que “estamos todavía muy lejos de detectar vida en planetas extrasolares con técnicas de análisis remoto”, pero adelanta que los análisis de este tipo de la luz de astros reflejada por exoplanetas se va a convertir en breve en una herramienta habitual para caracterizar otros mundos.

“La luz de un planeta extrasolar lejano está sobresaturada por el resplandor de su estrella y es muy difícil de analizar, es como intentar estudiar un grano de polvo que está junto a una bombilla encendida”, señala Bagnulo. “Pero la luz reflejada por un planeta esta polarizada, mientras que la de la estrella no, de manera de estas técnicas nos ayudan a aislar esa luz tenue de la del astro”.

Palle, por su parte, aclara que “encontrar vida fuera del Sistema Solar depende de dos cosas: de que exista esa vida y de tener la capacidad técnica de detectarla, y este trabajo es un paso importante para alcanzar esa capacidad”.

Al estudiar en la Luna el color y el grado de polarización de la luz procedente de la Tierra, los tres investigadores han logrado deducir cosas sabidas, pero nunca con esta técnica: que la atmósfera terrestre está parcialmente nublada, que parte de la superficie está cubierta por océanos y que hay vegetación. Incluso han detectado cambios en la cubierta de nubes y la cantidad de vegetación en diferentes partes del planeta, aseguran los expertos del ESO.

Fuente:

El Paìs Ciencia

google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0