Latest Posts:

21 de febrero de 2013

Así es la muerte de las estrellas

Supernova. Foto cedida por  NASA's Marshall Space Flight Center
Todos los días, cuando salimos a la calle o miramos por la ventana, somos conscientes del efecto que tiene el astro rey sobre el desarrollo de nuestras vidas. La supervivencia de los seres vivos depende íntegramente de su existencia y como si de una idea platónica se tratara, asumimos que Apolo seguirá arrastrando su carro a lo largo de las bóvedas celestes. Pese a que somos conscientes de que el Sol no es un cuerpo inmutable (un ejemplo aquí), sí es racional considerarlo como eterno. En esta entrada veremos cómo es la vida y muerte de una estrella. En general, puede decirse que la vida de una estrella es inversamente proporcional a su masa. Estrellas masivas dispondrán de vidas cortas e intensas, que concluirán de manera trágica. Sin embargo, las estrellas más pequeñas alargarán su existencia durante períodos mucho más largos y abandonarán este mundo sin pena ni gloria. 

Para comprender cómo acaba la vida de una estrella es necesario conocer cómo es su nacimiento. Una estrella comienza su vida a partir del colapso de una gran nube de materia, compuesta en su mayor parte por hidrógeno. Debido a la gran cantidad presente de materia, los átomos comienzan a acercarse entre sí por la acción de la gravedad. Quiero recalcar que si los átomos se atraen entre sí (sí, átomos pequeñitos) es porque su cantidad es desproporcionada. Por ello, cada vez es mayor  la presión y comienzan a chocar entren sí, aumentando la temperatura. Durante el transcurso de este proceso, los átomos de hidrógeno están tan cerca que comienzan a fundirse, lo cual produce energía, que contrarresta los efectos de la gravedad, haciendo que la estrella se hinche y tome la forma que mantendrá durante la mayor parte de su vida. Esta  fase que se conoce como secuencia principal es en la que se quema el hidrógeno para producir helio y energía.
Esquema del proceso de fusión nuclear. / Wykis
Las estrellas son enormes calderas. Se ven obligadas por la fuerza de la gravedad a convertir el hidrógeno, a 16 millones de grados Celsius, en helio. Afortunadamente, esto es lo único que necesitan durante la mayor parte de sus vidas.
En la figura situada a la izquierda puede verse, de manera esquemática, el proceso de fusión nuclear. A grandes rasgos, en el núcleo del cuerpo celeste, un átomo de deuterio y otro de tritio (isótopos de hidrógeno) se "funden", lo cual produce un átomo de helio y un neutrón, junto con, cómo no: energía.

Las reservas de hidrógeno pueden parecer eternas desde la perspectiva de un ser humano, pero llega un punto en el que no hay más hidrógeno disponible que contrarreste el efecto de la gravedad y la estrella comienza su declive. Esto se traduce en una muerte, larga y violenta. La violencia se traduce en que su volumen aumenta, pasando a ocupar un espacio cientos de veces mayor al que disponían durante su secuencia principal. Agonizante, la estrella es incapaz de mantener la temperatura de su superficie y su color se apaga, de ahí que se denomine a estas estrellas moribundas con el término de gigantes rojas.


Foto cedida por Andrea Dupree
El ejemplo de gigante roja por antonomasia es Betelgeuse. A la derecha de este párrafo podemos ver una foto tomada por el telescopio Hubble. Aunque tal vez no lo parezca, su radio es lo suficientemente grande como para que si el Sol se encontrara en el centro, todo el sistema solar cupiese dentro de esta estrella hinchada y y a punto de morir. Un hecho curioso es que la estrella se encuentra a 600 años luz de nosotros, por lo que podría haber muerto hace tiempo, pero todavía no habernos llegado su funesto destello.

En el interior de estos gigantes moribundos la gravedad empieza a ganar la batalla. Esto es debido a que por falta de hidrógeno, el proceso de fusión se está apagando. Este declive hace que los átomos cedan a la influencia de la gravedad y la distancia entre ellos disminuya. Por tal razón, las reacciones de fusión se reactivan, debido a que aún queda materia en el núcleo. Sin embargo, no se  trata de la misma situación que en la secuencia principal. Ahora ya no queda hidrógeno que fundir, sino helio; y debido a que la presión en el núcleo ha aumentado, las temperaturas son mayores (alrededor de unos 100 millones de grados Celsius). Esta situación hace posible que los átomos de helio se fundan entre sí, y producen la aparición del carbono, del oxígeno y de la energía suficiente para detener el colapso, al menos temporalmente. He aquí una de las ironías del universo. Para que se originen dos de los elementos más importantes para la presencia de la vida, una estrella debe morir. 

En el caso de nuestro Sol, al poseer una masa comedida, cuando el helio se agote, detendrá su proceso de fusión, ya que no quedará suficiente masa en su núcleo para plantarle cara a la gravedad. En ese momento el Sol se desprenderá de sus capas más externas,  y tan sólo quedará su núcleo, el cual  pasará a tomar el nombre de enana blanca, que irá apagándose a lo largo de las eras, hasta convertirse en una enana negra

Antes de retomar la muerte de Betelgeuse, debemos hablar de las estrellas menos masivas, es decir, aquellas cuya masa es menor que la mitad que la que posee el Sol. Como decíamos antes, la intensidad de la vida de una estrella depende de su masa. Las estrellas más grandes requieren mayor energía del proceso de fusión nuclear para contrarrestar la gravedad producida por este exceso de materia. Una enana roja, sin embargo, quema su combustible de manera lenta durante toda su vida, por lo que poco se conoce sobre su muerte, pero se espera que no sea muy violenta.

Si la masa de la estrella es superior a la del Sol, pueden darse nuevas fases de colapso y reinicio del proceso de fusión. Es decir, el proceso continúa más allá de la fusión del helio, siempre y cuando quede suficiente materia. De esta manera se consiguen todos los elementos de la tabla periódica hasta llegar al hierro. De hecho, el final de una estrella de menos de nueve masas solares, consiste en que gran parte del volumen de la estrella se estructura como una esfera con capas. Además, su centro está compuesto por hierro y las capas externas de elementos menos pesados, hasta llegar a una superficie de hidrógeno. Una vez se ha alcanzado este estado, mediante una violenta explosión, la estrella muerta esparce al universo todo su contenido en forma de una nebulosa estelar.

Las estrellas más grandes, cuya masa es superior a nueve veces la masa solar, producen el resto de elementos que conocemos. Es tanta la materia que queda en la esfera metálica del final de sus vidas, que tras su colapso, se produce un "rebote" de materia, que choca contra las capas externas, y fuerza a que se alcancen temperaturas de miles de millones de grados Celsius. Durante esta tremenda explosión, denominada supernova, se dan las condiciones necesarias para formar el resto de elementos pesados como el oro, la plata o el uranio. Esta brutal explosión disemina la esencia de la estrella en el espacio, y deja  una densa estrella de neutrones donde anteriormente se encontraba el núcleo, la cual gira frenéticamente hasta el fin de la eternidad.

Con todo lo anterior quiero decir una cosa: nada es eterno, ni siquiera una gloriosa estrella. Lo importante de la muerte de estos cuerpos es  lo que nos enseñan. De las cenizas de algo grande, siempre puede volver a surgir algo nuevo. De cada una de las nebulosas que se producen tras la muerte de cualquier estrella lo suficientemente masiva, hay suficiente materia para que nazcan nuevos astros.

Foto cedida por NASA Goddard Photo and Video

El Sol,
los planetas del sistema solar, la vida, 
 se sustentan sobre el cadáver de innumerables astros. 
Nunca mejor dicho, somos polvo de estrellas.


Pepe "Puertas de Acero" Pérez

Fuente:

Mente Enjambre
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0